Source code for qns.models.epr.entanglement

#    SimQN: a discrete-event simulator for the quantum networks
#    Copyright (C) 2021-2022 Lutong Chen, Jian Li, Kaiping Xue
#    University of Science and Technology of China, USTC.
#
#    This program is free software: you can redistribute it and/or modify
#    it under the terms of the GNU General Public License as published by
#    the Free Software Foundation, either version 3 of the License, or
#    (at your option) any later version.
#
#    This program is distributed in the hope that it will be useful,
#    but WITHOUT ANY WARRANTY; without even the implied warranty of
#    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#    GNU General Public License for more details.
#
#    You should have received a copy of the GNU General Public License
#    along with this program.  If not, see <https://www.gnu.org/licenses/>.

from typing import List, Optional
import numpy as np

from qns.models.qubit.qubit import Qubit, QState
from qns.models.qubit.gate import H, X, Y, Z, CNOT, U
from qns.models.qubit.const import OPERATOR_PAULI_I, QUBIT_STATE_0, QUBIT_STATE_P


[docs]class BaseEntanglement(object): """ This is the base entanglement model """ def __init__(self, fidelity: float = 1, name: Optional[str] = None): """ generate an entanglement with certain fidelity Args: fidelity (float): the fidelity name (str): the entanglement name """ self.fidelity = fidelity self.name = name self.is_decoherenced = False
[docs] def swapping(self, epr: "BaseEntanglement") -> "BaseEntanglement": """ Use `self` and `epr` to perfrom swapping and distribute a new entanglement Args: epr (BaseEntanglement): another entanglement Returns: the new distributed entanglement """ raise NotImplementedError
[docs] def distillation(self, epr: "BaseEntanglement") -> "BaseEntanglement": """ Use `self` and `epr` to perfrom distillation and distribute a new entanglement Args: epr (BaseEntanglement): another entanglement Returns: the new distributed entanglement """ raise NotImplementedError
[docs] def to_qubits(self) -> List[Qubit]: """ Transport the entanglement into a pair of qubits based on the fidelity. Suppose the first qubit is [1/sqrt(2), 1/sqrt(2)].H Returns: A list of two qubits """ if self.is_decoherenced: q0 = Qubit(state=QUBIT_STATE_P, name="q0") q1 = Qubit(state=QUBIT_STATE_P, name="q1") return [q0, q1] q0 = Qubit(state=QUBIT_STATE_0, name="q0") q1 = Qubit(state=QUBIT_STATE_0, name="q1") a = np.sqrt(self.fidelity / 2) b = np.sqrt((1 - self.fidelity) / 2) qs = QState([q0, q1], state=np.array([[a], [b], [b], [a]])) q0.state = qs q1.state = qs self.is_decoherenced = True return [q0, q1]
[docs] def teleportion(self, qubit: Qubit) -> Qubit: """ Use `self` and `epr` to perfrom distillation and distribute a new entanglement Args: epr (BaseEntanglement): another entanglement Returns: the new distributed entanglement """ q1, q2 = self.to_qubits() CNOT(qubit, q1) H(qubit) c0 = qubit.measure() c1 = q1.measure() if c1 == 1 and c0 == 0: X(q2) elif c1 == 0 and c0 == 1: Z(q2) elif c1 == 1 and c0 == 1: Y(q2) U(q2, 1j * OPERATOR_PAULI_I) self.is_decoherenced = True return q2
def __repr__(self) -> str: if self.name is not None: return "<epr "+self.name+">" return super().__repr__()